我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:财神爷心水论坛 > 非流形造型 >

流形的可定向性

归档日期:07-27       文本归类:非流形造型      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  考虑一个拓扑流形,其坐标图映射到Rn。给定一个Rn的有序基,坐标图就给它所覆盖的流形的一片引入了一个方向,我们可以视为或者右手或者左手的。重叠的坐标图不要求在方向上一致,这给了流形一个重要的自由度。对于某些流形,譬如球面,我们可以选取一些坐标图使得重叠区域在手性上一致;这些流形称为可定向的。对于其它的流形,这不可能做到。后面这种可能性容易被忽视,因为任何在三维空间中(不自交的)嵌入的闭曲面都是可定向的。

  我们考虑三个例子: (1)莫比乌斯带,它是有边界的流形,(2)克莱因瓶,它在三维空间必须自交,以及(3)实射影平面,它很自然的出现在几何学中。 从圆心为原点的球面开始。穿过原点的每条直线在两个相对的点穿透球面。虽然我们不能物理上这么做,我们在数学上可以把相对点合并为同一点。这样产生的闭合曲面是实射影平面,又一个不可定向曲面。它有一些等价 的表述和构造,但是这个方法揭示了它的名字:所有给定的穿过原点的直线射影到该平面的一个点。

本文链接:http://chondriac.com/feiliuxingzaoxing/910.html