我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:财神爷心水论坛 > 非流形造型 >

微分流形的四维流形

归档日期:07-02       文本归类:非流形造型      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  在拓扑学中四维是一个非常特殊的维数。譬如斯梅尔的庞加莱猜想的证明只应用于大于四维的维数,他的h-配变定理不能应用于四维流形。而弗里德曼的对四维庞加莱猜想的证明则更复杂。而且人们发现,存在四维拓扑流形,在其上不能赋予任何微分结构。而四维欧式空间是唯一一个存在怪异微分结构的欧式空间。

  对四维微分流形的研究中具有里程碑意义的是英国数学家西蒙·唐纳森的工作。他的想法来源于理论物理中的规范场理论。他由此定义了被称为唐纳森不变量的四维微分流形的不变量。后来物理学家赛博格和爱德华·威腾将唐纳森不变量简化为一种更易于计算的不变量,后来被称作赛博格-威腾不变量(Seiberg-Witten invariants)。这些不变量都大大推进了人们对四维微分流形的理解。

  而对于四维拓扑流形,许多问题还没有解决。其中最重要的是四维流形的光滑庞加莱猜测:(作为一个拓扑流形)四维球面上只存在标准的微分结构。

本文链接:http://chondriac.com/feiliuxingzaoxing/692.html