我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:财神爷心水论坛 > 非流形 >

完备非紧正则黎曼流形

归档日期:06-06       文本归类:非流形      文章编辑:爱尚语录

  是一个等距变换(又称运动)。它是欧氏空间的运动在黎曼流形上的推广。在等距变换下,切向量的长度、交角以及两点之间的距离均保持不变,测地线变到测地线。N.E.斯廷罗德和S.B.迈尔斯证明了:M

  必是常曲率空间。由此可以看出,一个黎曼流形最多能容许含有多少个参数的某种变换群是与流形本身的几何性质和拓扑性质密切相关的。G.富比尼首先发现黎曼流形的最大等距变换群的参数个数是有空隙的。后经И.∏.叶戈罗夫、矢野健太郎、若桑英清、王宪钟等人的研究,确定了第一空隙,即 n

  上所有的射影变换依变换乘法构成的群称为最大射影变换群,相应的子群称为射影变换群。在局部坐标下,??

  ,这里是第二类克里斯托费尔符号,射影变换下最重要的不变张量是下式定义的射影曲率张量

  的最大共形变换群,相应的子群称为共形变换群。共形变换下最重要的不变张量是由下式定义的共形曲率张量这里R

  是数量曲率。一个黎曼流形的最大共形变换群的参数个数至多是个。 向量场 X

本文链接:http://chondriac.com/feiliuxing/486.html