我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:财神爷心水论坛 > 非交换连接 >

数学向量的数量积运算是否满足交换律?谢谢了

归档日期:08-08       文本归类:非交换连接      文章编辑:爱尚语录

  三个向量没有数量积运算,例如 a·b·c没有意义:前两个向量的运算结果是一个数,数和向量之间的运算称为“数乘向量”,而数与向量之间不可能进行数量积运算。

  高等数学中还要学习向量的向量积(又称为外积、叉乘等),那时任意有限多个向量之间都可以进行这种运算;三个向量还能进行向量积与数量积的混合运算。

  叉积的长度a×b可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。

  4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

  5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

  三个向量没有数量积运算,例如 a·b·c没有意义:前两个向量的运算结果是一个数,数和向量之间的运算称为“数乘向量”,而数与向量之间不可能进行数量积运算!

  高等数学中还要学习向量的向量积(又称为外积、叉乘等),那时任意有限多个向量之间都可以进行这种运算;三个向量还能进行向量积与数量积的混合运算。

本文链接:http://chondriac.com/feijiaohuanlianjie/1028.html